2-Hydroxyglutarate Production, but Not Dominant Negative Function, Is Conferred by Glioma-Derived NADP+-Dependent Isocitrate Dehydrogenase Mutations
نویسندگان
چکیده
BACKGROUND Gliomas frequently contain mutations in the cytoplasmic NADP(+)-dependent isocitrate dehydrogenase (IDH1) or the mitochondrial NADP(+)-dependent isocitrate dehydrogenase (IDH2). Several different amino acid substitutions recur at either IDH1 R132 or IDH2 R172 in glioma patients. Genetic evidence indicates that these mutations share a common gain of function, but it is unclear whether the shared function is dominant negative activity, neomorphic production of (R)-2-hydroxyglutarate (2HG), or both. METHODOLOGY/PRINCIPAL FINDINGS We show by coprecipitation that five cancer-derived IDH1 R132 mutants bind IDH1-WT but that three cancer-derived IDH2 R172 mutants exert minimal binding to IDH2-WT. None of the mutants dominant-negatively lower isocitrate dehydrogenase activity at physiological (40 µM) isocitrate concentrations in mammalian cell lysates. In contrast to this, all of these mutants confer 10- to 100-fold higher 2HG production to cells, and glioma tissues containing IDH1 R132 or IDH2 R172 mutations contain high levels of 2HG compared to glioma tissues without IDH mutations (54.4 vs. 0.1 mg 2HG/g protein). CONCLUSIONS Binding to, or dominant inhibition of, WT IDH1 or IDH2 is not a shared feature of the IDH1 and IDH2 mutations, and thus is not likely to be important in cancer. The fact that the gain of the enzymatic activity to produce 2HG is a shared feature of the IDH1 and IDH2 mutations suggests that this is an important function for these mutants in driving cancer pathogenesis.
منابع مشابه
IDH1/2 mutations target a key hallmark of cancer by deregulating cellular metabolism in glioma.
Isocitrate dehydrogenase (IDH) enzymes have recently become a focal point for research aimed at understanding the biology of glioma. IDH1 and IDH2 are mutated in 50%-80% of astrocytomas, oligodendrogliomas, oligoastrocytomas, and secondary glioblastomas but are seldom mutated in primary glioblastomas. Gliomas with IDH1/2 mutations always harbor other molecular aberrations, such as TP53 mutation...
متن کاملDisruption of wild-type IDH1 suppresses D-2-hydroxyglutarate production in IDH1-mutated gliomas.
Point mutations at Arg132 of the cytoplasmic NADP(+)-dependent isocitrate dehydrogenase 1 (IDH1) occur frequently in gliomas and result in a gain of function to produce the "oncometabolite" D-2-hydroxyglutarate (D-2HG). The mutated IDH1 allele is usually associated with a wild-type IDH1 allele (heterozygous) in cancer. Here, we identify 2 gliomas that underwent loss of the wild-type IDH1 allele...
متن کاملBiological Significance of Mutant Isocitrate Dehydrogenase 1 and 2 in Gliomagenesis
Mutations of the isocitrate dehydrogenase (IDH) genes are considered an important event that occurs at an early stage during gliomagenesis. The mutations often occur in grade 2 or 3 gliomas and secondary glioblastomas. Most IDH mutations are associated with codon 132 and 172 in IDH1 and IDH2 in gliomas, respectively. While IDH1 and IDH2 catalyze the oxidative decarboxylation of isocitrate to fo...
متن کاملOncometabolite 2-hydroxyglutarate is a competitive inhibitor of α-ketoglutarate-dependent dioxygenases.
IDH1 and IDH2 mutations occur frequently in gliomas and acute myeloid leukemia, leading to simultaneous loss and gain of activities in the production of α-ketoglutarate (α-KG) and 2-hydroxyglutarate (2-HG), respectively. Here we demonstrate that 2-HG is a competitive inhibitor of multiple α-KG-dependent dioxygenases, including histone demethylases and the TET family of 5-methlycytosine (5mC) hy...
متن کاملIDH1 and IDH2 mutations as novel therapeutic targets: current perspectives
Isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2) are key metabolic enzymes that convert isocitrate to α-ketoglutarate. IDH1/2 mutations define distinct subsets of cancers, including low-grade gliomas and secondary glioblastomas, chondrosarcomas, intrahepatic cholangiocarcinomas, and hematologic malignancies. Somatic point mutations in IDH1/2 confer a gain-of-function in cancer cells, resulting ...
متن کامل